B.Com $4^{\text {th }}$ Semester (CBCS)

Sub: Business Mathematics

Topic: Useful Shortcuts and Tricks for Simple Interest \& Compound Interest

Simple Interest:

Formula:

1) $\mathrm{SI}=\mathrm{P} \times \mathrm{R} \times \mathrm{T} / 100$
2) Principal $=$ Simple Interest $\times 100 / R \times T$
3) Rate of Interest $=$ Simple Interest $\times 100 / P \times T$
4) Time $=$ Simple Interest $\times 100 / P \times R$
5) If the rate of Simple interest differs from year to year, then

Simple Interest $=$ Principal $\times(\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3 \ldots .) /$.
The four variables in the above formula are: $\mathrm{SI}=$ Simple Interest $\mathrm{P}=$ Principal Amount (This the amount invested) $\mathrm{T}=$ Number of years $\mathrm{R}=$ Rate of interest (per year) in percentage
1). A sum of money is divided into n parts in such a way that the interest on the first part at $\mathrm{r}_{1} \%$ for t_{1} years, on the second part at $\mathrm{r}_{2} \%$ for t_{2} years, on the third part at $\mathrm{r}_{3} \%$ for t_{3} years, and so on, are equal. Then the ratio in which the sum is divided in n part is:
$1 / \mathrm{r}_{1} \times \mathrm{t}_{1}: 1 / \mathrm{r}_{2} \times \mathrm{t}_{2}: 1 / \mathrm{r}_{3} \times \mathrm{t}_{3}$

Example:

A sum of Rs 7700 is lent out in two parts in such a way that the interest on one part at 20% for 5 yr is equal to that on another part at 9% for 6 yr . Find the two sums.

Solution:

Here, R1 = 20\% R2 = 9\%
$\mathrm{T} 1=5 \mathrm{yr} \mathrm{T} 2=6 \mathrm{yr}$
By using formula, ratio of two sums $=1 / 100: 1 / 54=27: 50$
Therefore, first part $=[27 /(27+50)] * 7700=$ Rs 2700
Second part $=[50 /(27+50)] * 7700=$ Rs 5000
2). Amount $=$ Principal + S. $I=p+[(p \times r \times t) / 100]$

Example:

What Principal will amount to Rs. $\mathbf{1 6 0 0 0}$ in 6 years at 10% simple interest?

Solution:

Let the principal be Rs. p, given rate of interest is 10% and time $=6$ years.
Amount received at the end of 6 years $=16000$ Rs.
$\Rightarrow 16000=p+(\mathrm{px} 10 \times 6) / 100=\mathrm{p}+6 \mathrm{p} / 10=16 \mathrm{p} / 10 \Rightarrow \mathrm{P}=16000 \times(10 / 16)=1000$
x $10=10000$ Rs. The principal should be Rs. 10000
3). If sum becomes n times in T yr at simple interest, then the formula for calculating the rate of interest
$\mathrm{R}=100(\mathrm{n}-1) / \mathrm{T} \%$
4). A sum of money becomes 4 times in 20 yr at SI. Find the rate of interest?
$\mathrm{R}=100(4-1) / 20$
$=100 * 3 / 20=5 * 3=15$
5). If A sum becomes n times in a certain rate of interest then the time taken in which the same amount will be n times at the same rate of interest: $=(\mathrm{n}-1) / 2 \times \mathrm{T}(\mathrm{n}=$ number of times $)$
6). If A sum becomes 3 times in a certain rate of interest in 5years .find the time taken in the same amount will be 8 times at the same rate of interest:
$=(8-1) / 2 * 5$
$=7 / 2 * 5$
$=17.5$ years

Useful Shortcuts and Tricks for Simple Interest \& Compound Interest

Compound Interest

The difference between the amount and the money borrowed is called the compound interest for a given period of time

1) Let principal $=P$; time $=$ n years; and rate $=r \%$ per annum and let A be the total amount at the end of n years, then
$\mathrm{A}=\mathrm{P}^{*}[1+(\mathrm{r} / 100)]^{\mathrm{n}}$;
$\mathrm{CI}=\left\{\mathrm{P}^{*}[1+(\mathrm{r} / 100)]^{\mathrm{n}}-1\right\}$
2) When compound interest reckoned half-yearly, then $r \%$ become $r / 2 \%$ and time \mathbf{n} becomes $\mathbf{2 n}$;
$\mathrm{A}=\mathrm{P} *[1+(\mathrm{r} / 2 * 100)]^{2 \mathrm{n}}$
3) For the quarterly
$\mathrm{A}=\mathrm{P} *[1+(\mathrm{r} / 4 * 100)]^{4 \mathrm{n}}$
4) The difference between compound interest and simple interest over two years is given by
$\operatorname{Pr}^{2} / 100^{2}$ or $\mathrm{P}(\mathrm{r} / 100) 2$
5) The difference between compound interest and simple interest over three years is given by
$\mathrm{P}(\mathrm{r} / 100)^{2 *}\{(\mathrm{r} / 100)+3\}$
6) When Rates are different for different years, say R1\%, R2\%, R3\% for 1st, 2nd and 3rd year respectively, Then the total amount is given by
$\mathrm{P}\left(\left(1+\mathrm{R}^{1}\right) / 100\right)\left(\left(1+\mathrm{R}^{2}\right) / 100\right)\left(\left(1+\mathrm{R}^{2}\right) / 100\right)$
7) Present worth of Rs. x due n years hence is given by
$\mathrm{x} /(1+\mathrm{R} / 100)$

Useful Shortcuts and Tricks for Simple Interest \& Compound Interest

Example Problems

1). Interest is compounded half-yearly, therefore,

Example:

Find the compound interest on Rs. 20,000 in 2 years at 4% per annum, the interest is compounded half-yearly.

Solution:

Principal $=$ Rs. 20000, Rate $=2 \%$ per half-year, Time $=2$ years $=4$ half- years
Amount=Rs. 21648.64
Compound Interest $=$ Total amount - Principal
$=21648.64-20000$
$=$ Rs. 1648.64
2). If interest is compounded annually,

Example:

Find the compound interest on Rs. 8500 at 4% per annum for 2 years, compounded annually.

Solution:

We are given:
Principal $=$ Rs. 8500 , Rate $=4 \%$ per annum, Time $=2$ years
$=$ Rs. 9193.6Compound Interest $=$ Total amount - Principal $=9193.6-8500$
= 693.6Compound Interest $=$ Rs. 693.6
3). When Rates are different for different years, say R1\%, R2\%, R3\% for 1st, 2nd and 3rd year respectively. Then, Amount ($=$ Principal + Compound interest $)=\mathrm{P}(1+$ $\mathrm{R} 1 / 100)(1+\mathrm{R} 2 / 100)(1+\mathrm{R} 3 / 100)$.

Example:

Find the compound interest on a principal amount of Rs. 5000 after 2 years, if the rate of interest for the 1st year is 2% and for the 2 nd year is 4%.

Solution:

Here R1 $=2 \% \mathrm{R} 2=4 \%$ and $\mathrm{p}=$ Rs.5000, we have to find CI (compound interest).
$\mathrm{CI}=5000(1+2 / 100)(1+4 / 100)-5000$
$=5000 \mathrm{x}(102 / 100)(104 / 100)-5000$
$=5000 \times(51 / 50) \times(52 / 50)-5000$
$=5000 \times(51 \times 52 / 2500)-5000$
$=5000 \times(2652 / 2500)-5000$
$=5304-5000=304$ Hence the required compound interest is Rs.304.
4). When compound interest is reckoned half-yearly.

If the annual rate is $\mathrm{r} \%$ per annum and is to be calculated for n years, then, in this case, rate $=(\mathrm{n} / 2 \%)$ half-yearly and time $=(2 \mathrm{n})$ half-yearly.

Example:

Sam investment Rs.15,000 @ 10\% per annum for one year. If the interest is compounded half-yearly, then the amount received by Sam at the end of the year will be.

Solution:

$\mathrm{P}=$ Rs. $15000 ; \mathrm{R}=10 \% \mathrm{p} . \mathrm{a}=5 \%$ half-year, $\mathrm{T}=1$ year $=2$ half year

Amount = Rs. 16537.50
If the simple interest for a certain sum for 2 yrs at the annual rate of interest $\mathrm{R} \%$ is SI . Then,

Compound interest $(\mathbf{C I})=$ SI (1+r/200) $\quad($ no. of years $=2)$
5). If the simple interest for a certain sum for 2 yr at 5% pa is 200 , then what will be the compound interest for the same sum for the same period and the same rate of interest?

Solution:

SI =200 r=5\%
CI $=200(1+5 / 200)=200 *(205 / 200)=205$
If a certain sum at compound interest becomes x times $n_{1} \wedge y r$ and y times $n_{2} \wedge y r$ then, $X^{1 / \mathrm{N} 1}=\mathbf{Y}^{1 / \mathrm{N} 2}$

Useful Shortcuts and Tricks for Simple Interest \& Compound Interest

6). If an amount at compound interest becomes twice in 5 yr , then in how many years, it will be 16 times at the same rate of interest?
$2^{1 / 5}=16^{1 / \times 2}$
$=2^{4 * 1 / \times 2}$
$1 / 5=4 / x_{2}$
$\mathrm{X}_{2}=5 * 4=20 \mathrm{yrs}$
If a certain sum at compound interest amounts to A_{1} in n yrs and A_{2} in $(\mathrm{n}+1) \mathrm{yrs}$, then

Rate of compound interest $=\left(\mathbf{A}_{\mathbf{2}}-\mathbf{A}_{1}\right) / \mathbf{A}_{\mathbf{1}} * \mathbf{1 0 0 \%}$
Sum $=\mathbf{A}_{1}\left(\mathbf{A}_{1} / \mathbf{A}_{2}\right)^{\mathbf{n}}$
7). A sum of money invested at compound interest amounts to 800 in 2 yr and 840 in $3 y r s$. Find the rate of interest and the sum.
$\mathrm{A}_{1}=800 ; \mathrm{A}_{2}=840$,
Rate of interest $=(840-800) / 800 * 100 \%=40 / 8=5 \%$
Sum $=800 *(800 / 840)^{2}=320000 / 441=$ Rs. 725.62
If the populations of a city P and increases with the rate of $\mathrm{R} \%$ per annum, then

- Populations after $\mathbf{n y r}=\mathbf{p}(\mathbf{1}+\mathrm{R} / \mathbf{1 0 0})^{\mathrm{n}}$
- Populations $n y r$ ago $=p /(1+R / 100)^{n}$
8). The population of city A is 5000 . It increases by 10% in $1^{\text {st }}$ year. It decreases by 20% in the $2^{\text {nd }} \mathrm{yr}$ because of some reason. In the $3^{\text {rd }} \mathrm{yr}$, the population increases by 30%. What will be the [population of area A at the end of 3yrs?
$=5000(1+10 / 100)(1-20 / 100)(1+30 / 100)$
$=500 *(11 / 10) *(4 / 5) *(13 / 10)=5720$
Difference between ci and si $2 \mathrm{yr}=\mathrm{pr}^{2} / 100^{2}$
9). The difference between c.i and s.i for 2 yr at the rate of 5% per annum is 5 .then the sum
$5=\mathrm{p}(5 / 100)^{2}=$ Rs. 2000
Rate of interest (no .of years =2)
(for only ci)
$2 \%=4.04 \%$
$3 \%=6.09 \%$
$4 \%=8.16 \%$
$5 \%=10.25 \%$
$6 \%=12.36 \%$
$7 \%=14.49 \%$
$8 \%=16.64 \%$
$9 \%=18.81 \%$
$10 \%=20.00+1.00=21 \%$
10). What is the Compound interest for Rs. 1500 at 5% rate of interest for 2 years?
$1500 *(10.25 / 100)=153.75$

