B.Com 4th Semester (CBCS)

Sub: Business Mathematics

Topic: Useful Shortcuts and Tricks for Simple Interest & Compound Interest

Simple Interest:

Formula:

1) $SI = P \times R \times T/100$

2) Principal = Simple Interest ×100/ R × T
3) Rate of Interest = Simple Interest ×100 / P × T
4) Time = Simple Interest ×100 / P × R
5) If the rate of Simple interest differs from year to year, then

Simple Interest = Principal \times (R1+R2+R3....)/100

The four variables in the above formula are: SI=Simple Interest P=Principal Amount (This the amount invested) T=Number of years R=Rate of interest (per year) in percentage

1). A sum of money is divided into n parts in such a way that the interest on the first part at r_1 % for t_1 years, on the second part at r_2 % for t_2 years, on the third part at r_3 % for t_3 years, and so on, are equal. Then the ratio in which the sum is divided in n part is:

 $1/r_1 \times t_1: 1/r_2 \times t_2: 1/r_3 \times t_3$

Example:

A sum of Rs 7700 is lent out in two parts in such a way that the interest on one part at 20% for 5 yr is equal to that on another part at 9% for 6 yr. Find the two sums.

Solution:

Here, R1 = 20% R2 = 9%

T1 = 5 yr T2 = 6 yr

By using formula, ratio of two sums = 1/100 : 1/54 = 27 : 50

Therefore, first part = [27/(27+50)]*7700 = Rs 2700

Second part = [50/(27+50)]*7700 = Rs 5000

2). Amount = Principal + S.I = $p + [(p \times r \times t)/100]$

Example:

What Principal will amount to Rs. 16000 in 6 years at 10% simple interest?

Solution:

3). If sum becomes n times in T yr at simple interest, then the formula for calculating the rate of interest

R = 100(n-1) / T %

4). A sum of money becomes 4 times in 20 yr at SI. Find the rate of interest?

R =100(4-1)/20 =100*3 / 20 =5*3 =15

5). If A sum becomes n times in a certain rate of interest .then the time taken in which the same amount will be n times at the same rate of interest: $= (n-1)/2 \times T$ (n = number of times)

6). If A sum becomes 3 times in a certain rate of interest in 5 years .find the time taken in the same amount will be 8 times at the same rate of interest:

=(8-1)/2*5= 7/2 * 5 =17.5 years

Useful Shortcuts and Tricks for Simple Interest & Compound Interest

Compound Interest

The difference between the amount and the money borrowed is called the compound interest for a given period of time

1) Let principal =P; time =n years; and rate = r% per annum and let A be the total amount at the end of n years, then

A = P*[1+ (r/100)]ⁿ; CI = {P*[1+ (r/100)]ⁿ -1} 2) When compound interest reckoned half-yearly, then r% become r/2% and time n becomes 2n;

A = $P^*[1 + (r/2*100)]^{2n}$ 3) For the quarterly

$A = P^* [1 + (r/4^* 100)]^{4n}$

4) The difference between compound interest and simple interest over two years is given by

Pr²/100² or P(r/100)2

5) The difference between compound interest and simple interest over three years is given by

$P(r/100)^{2*}{(r/100)+3}$

6) When Rates are different for different years, say R1%, R2%, R3% for 1st, 2nd and 3rd year respectively, Then the total amount is given by

P $((1 + R^1)/100) ((1 + R^2)/100) ((1 + R^2)/100)$ 7) Present worth of Rs. x due n years hence is given by

x/(1+R/100)

Useful Shortcuts and Tricks for Simple Interest & Compound Interest

Example Problems

1). Interest is compounded half-yearly, therefore,

Example:

Find the compound interest on Rs. 20,000 in 2 years at 4 % per annum, the interest is compounded half-yearly.

Solution:

Principal = Rs. 20000, Rate = 2 % per half-year, Time = 2 years = 4 half- years Amount=Rs.21648.64

Compound Interest = Total amount - Principal

= 21648.64 - 20000

= Rs. 1648.64

2). If interest is compounded annually,

Example:

Find the compound interest on Rs. 8500 at 4 % per annum for 2 years, compounded annually.

Solution:

We are given:

Principal = Rs. 8500, Rate = 4 % per annum, Time = 2 years

= Rs. 9193.6Compound Interest = Total amount – Principal= 9193.6 – 8500

= 693.6Compound Interest = Rs. 693.6 3). When Rates are different for different years, say R1%, R2%, R3% for 1st, 2nd and 3rd year respectively. Then, Amount (= Principal + Compound interest) = P(1 + R1/100)(1 + R2/100)(1 + R3/100). Example:

Find the compound interest on a principal amount of Rs.5000 after 2 years, if the rate of interest for the 1st year is 2% and for the 2nd year is 4%.

Solution:

Here R1 = 2% R2 = 4% and p = Rs.5000, we have to find CI (compound interest). CI = 5000(1 + 2/100)(1 + 4/100) - 5000= $5000 \times (102/100)(104/100) - 5000$ = $5000 \times (51/50) \times (52/50) - 5000$ = $5000 \times (2652 / 2500) - 5000$ = 5304 - 5000 = 304Hence the required compound interest is Rs.304. 4). When compound interest is reckoned half-yearly.

If the annual rate is r% per annum and is to be calculated for n years, then, in this case, rate = (n/2%) half-yearly and time = (2n) half-yearly. **Example:**

Sam investment Rs.15,000 @ 10% per annum for one year. If the interest is compounded half-yearly, then the amount received by Sam at the end of the year will be.

Solution:

P = Rs. 15000; R = 10% p.a = 5% half-year, T = 1 year = 2 half year

Amount = Rs.16537.50

If the simple interest for a certain sum for 2yrs at the annual rate of interest R% is SI. Then,

Compound interest (CI) = SI (1+r/200) (no. of years =2)

5). If the simple interest for a certain sum for 2 yr at 5% pa is 200, then what will be the compound interest for the same sum for the same period and the same rate of interest?

Solution:

SI =200 r=5% CI =200(1+5/200) =200*(205/200) =205

If a certain sum at compound interest becomes x times n_1^y r and y times n_2^y r then, $X^{1/N1} = Y^{1/N2}$

Useful Shortcuts and Tricks for Simple Interest & Compound Interest

6). If an amount at compound interest becomes twice in 5yr, then in how many years, it will be 16 times at the same rate of interest?

 $2^{1/5} = 16^{1/x^2}$ = $2^{4^{*1/x^2}}$ $1/5 = 4/x_2$ $X_2 = 5^{*4} = 20$ yrs

If a certain sum at compound interest amounts to A_1 in n yrs and A_2 in (n+1) yrs, then

Rate of compound interest = $(A_2 - A_1)/A_1 *100\%$ Sum = $A_1 (A_1/A_2)^n$

7). A sum of money invested at compound interest amounts to 800 in 2yr and 840 in 3yrs. Find the rate of interest and the sum.

A₁ =800 ; A₂ =840, Rate of interest = (840-800)/800 *100% = 40/8 = 5%Sum = 800 * $(800/840)^2 = 320000/441 = \text{Rs}.725.62$

If the populations of a city P and increases with the rate of R% per annum, then

- Populations after n yr = $p(1+R/100)^n$
- Populations n yr ago = $p / (1+R/100)^n$

8). The population of city A is 5000. It increases by 10% in 1^{st} year. It decreases by 20% in the 2^{nd} yr because of some reason. In the 3^{rd} yr, the population increases by 30%. What will be the [population of area A at the end of 3yrs?

=5000(1+10/100)(1-20/100)(1+30/100) $=500^{*}(11/10)^{*}(4/5)^{*}(13/10)=5720$

Difference between ci and si $2yr = pr^2 / 100^2$

9). The difference between c.i and s.i for 2yr at the rate of 5% per annum is 5 .then the sum $5 = p (5/100)^2 = Rs.2000$

Rate of interest (no .of years =2)

(for only ci) 2% = 4.04% 3% = 6.09% 4% = 8.16% 5% = 10.25% 6% = 12.36% 7% = 14.49% 8% = 16.64% 9% = 18.81% 10% = 20.00+ 1.00 = 21%

10). What is the Compound interest for Rs. 1500 at 5% rate of interest for 2 years? 1500*(10.25/100) = 153.75